本文作者为: SylvanasSun.转载请务必将下面这段话置于文章开头处(保留超链接).
本文转发自SylvanasSun Blog,原文链接: https://sylvanassun.github.io/2017/07/25/2017-07-25-Graph_WeightedUndirectedGraph/
加权无向图
所谓加权图
,即每条边
上都有着对应的权重
,这个权重
是正数也可以是负数,也不一定会和距离成正比.加权无向图
的表示方法只需要对无向图
的实现进行一下扩展.
- 在使用
邻接矩阵
的方法中,可以用边
的权重
代替布尔值来作为矩阵的元素.
- 在使用
邻接表
的方法中,可以在链表
的节点
中添加一个权重域.
- 在使用
邻接表
的方法中,将边
抽象为一个Edge
类,它包含了相连的两个顶点
和它们的权重
,链表
中的每个元素都是一个Edge
.
我们使用第三种方法来实现加权无向图
,它的数据表示如下图:
Edge的实现
|
|
Edge
类提供了either()
与other()
两个函数,在两个顶点
都未知的情况下,可以调用either()
获得顶点v
,然后再调用other(v)
来获得另一个顶点
.
加权无向图的实现
|
|
上述代码是对无向图
的扩展,它将邻接表
中的元素从整数
变为了Edge
,函数edges()
返回了边
的集合,由于是无向图
所以每条边
会出现两次,需要注意处理.
加权无向图
的实现还拥有以下特点:
- 边的比较:
Edge
类实现了Comparable
接口,它使用了权重
来比较两条边
的大小,所以加权无向图
的自然次序就是权重次序.
- 自环: 该实现允许存在自环,并且
edges()
函数中对自环边进行了记录.
- 平行边: 该实现允许存在平行边,但可以用更复杂的方法来消除平行边,例如只保留平行边中的权重最小者.
最小生成树
最小生成树
是加权无向图
的重要应用.图
的生成树
是它的一棵含有其所有顶点
的无环连通子图
,最小生成树
是它的一棵权值
(所有边的权值之和)最小的生成树
.
在给定的一幅加权无向图
$G = (V,E)$中,$(u,v)$代表连接顶点u
与顶点v
的边
,也就是$(u,v) \in E$,而$w(u,v)$代表这条边的权重
,若存在T
为E
的子集,也就是$T \subseteq E$,且为无环图
,使得$w(T) = \sum_{(u,v) \in T}w(u,v)$ 的 $w(T)$ 最小,则T
为G
的最小生成树
.
最小生成树
在一些情况下可能会存在多个,例如,给定一幅图G
,当它的所有边的权重
都相同时,那么G
的所有生成树
都是最小生成树
,当所有边的权重
互不相同时,将会只有一个最小生成树
.
切分定理
切分定理
将图中的所有顶点
切分为两个集合(两个非空且不重叠的集合),检查两个集合的所有边并识别哪条边应属于图的最小生成树
.
一种比较简单的切分方法即通过指定一个顶点集并隐式地认为它的补集为另一个顶点集来指定一个切分.
切分定理
也表明了对于每一种切分,权重
最小的横切边(一条连接两个属于不同集合的顶点的边)
必然属于最小生成树
.
切分定理
是解决最小生成树
问题的所有算法的基础,使用切分定理
找到最小生成树
的一条边,不断重复直到找到最小生成树
的所有边.
这些算法可以说都是贪心算法
,算法的每一步都是在找最优解(权值
最小的横切边
),而解决最小生成树
的各种算法不同之处仅在于保存切分和判定权重
最小的横切边
的方式.
Prim算法
Prim算法
是用于解决最小生成树
的算法之一,算法的每一步都会为一棵生长中的树
添加一条边.一开始这棵树只有一个顶点
,然后会一直添加到$V - 1$条边,每次总是将下一条连接树
中的顶点
与不在树
中的顶点
且权重
最小的边加入到树
中(也就是由树
中顶点
所定义的切分中的一条横切边
).
实现Prim算法
还需要借助以下数据结构:
- 布尔值数组: 用于记录
顶点
是否已在树
中.
- 队列: 使用一条队列来保存
最小生成树
中的边,也可以使用一个由顶点
索引的Edge
对象的数组.
- 优先队列: 优先队列用于保存
横切边
,优先队列的性质可以每次取出权值
最小的横切边
.
延时实现
当我们连接新加入树
中的顶点
与其他已经在树
中顶点
的所有边都失效了(由于两个顶点
都已在树
中,所以这是一条失效的横切边
).我们需要处理这种情况,即使实现对无效边采取忽略(不加入到优先队列中),而延时实现会把无效边留在优先队列中,等到要删除优先队列中的数据时再进行有效性检查.
上图为Prim算法
延时实现的轨迹图,它的步骤如下:
- 将
顶点0
添加到最小生成树
中,将它的邻接表
中的所有边添加到优先队列中(将横切边
添加到优先队列).
- 将
顶点7
和边0-7
添加到最小生成树
中,将顶点
的邻接表
中的所有边添加到优先队列中.
- 将
顶点1
和边1-7
添加到最小生成树
中,将顶点
的邻接表
中的所有边添加到优先队列中.
- 将
顶点2
和边0-2
添加到最小生成树
中,将边2-3
和6-2
添加到优先队列中,边2-7
和1-2
失效.
- 将
顶点3
和边2-3
添加到最小生成树
中,将边3-6
添加到优先队列之中,边1-3
失效.
- 将
顶点5
和边5-7
添加到最小生成树
中,将边4-5
添加到优先队列中,边1-5
失效.
- 从优先队列中删除失效边
1-3
,1-5
,2-7
.
- 将
顶点4
和边4-5
添加到最小生成树
中,将边6-4
添加到优先队列中,边4-7
,0-4
失效.
- 从优先队列中删除失效边
1-2
,4-7
,0-4
.
- 将
顶点6
和边6-2
添加到最小生成树
中,和顶点6
关联的其他边失效.
- 在添加
V
个顶点与V - 1
条边之后,最小生成树
就构造完成了,优先队列中剩余的边都为失效边.
|
|
即时实现
在即时实现中,将v
添加到树中时,对于每个非树顶点w
,不需要在优先队列中保存所有从w
到树顶点
的边,而只需要保存其中权重
最小的边,所以在将v
添加到树
中后,要检查是否需要更新这条权重
最小的边(如果v-w
的权重
更小的话).
也可以认为只会在优先队列中保存每个非树顶点w
的一条边(也是权重
最小的那条边),将w
和树顶点
连接起来的其他权重
较大的边迟早都会失效,所以没必要在优先队列中保存它们.
要实现即时版的Prim算法
,需要使用两个顶点索引的数组edgeTo[]
和distTo[]
与一个索引优先队列,它们具有以下性质:
- 如果
顶点v
不在树中但至少含有一条边和树相连,那么edgeTo[v]
是将v
和树连接的最短边,distTo[v]
为这条边的权重
.
- 所有这类
顶点v
都保存在索引优先队列中,索引v
关联的值是edgeTo[v]
的边的权重
.
- 索引优先队列中的最小键即是
权重
最小的横切边
的权重
,而和它相关联的顶点v
就是下一个将要被添加到树
中的顶点
.
- 将
顶点0
添加到最小生成树
之中,将它的邻接表
中的所有边添加到优先队列中(这些边是目前唯一已知的横切边).
- 将
顶点7
和边0-7
添加到最小生成树
,将边1-7
和5-7
添加到优先队列中,将连接顶点4
与树的最小边由0-4
替换为4-7
.
- 将
顶点1
和边1-7
添加到最小生成树
,将边1-3
添加到优先队列.
- 将
顶点2
和边0-2
添加到最小生成树,将连接顶点6
与树的最小边由0-6
替换为6-2
,将连接顶点3
与树的最小边由1-3
替换为2-3
.
- 将
顶点3
和边2-3
添加到最小生成树
.
- 将
顶点5
和边5-7
添加到最小生成树
,将连接顶点4
与树的最小边4-7
替换为4-5
.
- 将
顶点4
和边4-5
添加到最小生成树
.
- 将
顶点6
和边6-2
添加到最小生成树
.
- 在添加了
V - 1
条边之后,最小生成树
构造完成并且优先队列为空.
|
|
不管是延迟实现
还是即时实现
,Prim算法
的规律就是: 在树
的生长过程中,都是通过连接一个和新加入的顶点
相邻的顶点
.当新加入的顶点
周围没有非树顶点
时,树的生长又会从另一部分开始.
Kruskal算法
Kruskal算法
的思想是按照边的权重
顺序由小到大处理它们,将边添加到最小生成树
,加入的边不会与已经在树
中的边构成环,直到树
中含有V - 1
条边为止.这些边会逐渐由一片森林
合并为一棵树
,也就是我们需要的最小生成树
.
与Prim算法的区别
Prim算法
是一条边一条边地来构造最小生成树
,每一步都会为树
中添加一条边.
Kruskal算法
构造最小生成树
也是一条边一条边地添加,但不同的是它寻找的边会连接一片森林
中的两棵树
.从一片由V
棵单顶点
的树构成的森林
开始并不断地将两棵树
合并(可以找到的最短边)直到只剩下一棵树
,它就是最小生成树
.
实现
要实现Kruskal算法
需要借助Union-Find
数据结构,它是一种树型的数据结构,用于处理一些不相交集合的合并与查询问题.
关于Union-Find
的更多资料可以参考下面的链接:
|
|
上面代码实现的Kruskal算法
使用了一条队列来保存最小生成树
的边集,一条优先队列来保存还未检查的边,一个Union-Find
来判断失效边.
性能比较
算法 | 空间复杂度 | 时间复杂度 |
---|---|---|
Prim(延时) | E | ElogE |
Prim(即时) | V | ElogV |
Kruskal | E | ElogE |